Linear Algebra MTH 221 Fall 2011, 1–4

Final Exam MTH 221, Fall 2011

Ayman Badawi

LECTURE TIME:

QUESTION 1. (Each = 3 points, Total = 69 points) Circle the correct letter.

–, ID –

(i) Let
$$A = \begin{bmatrix} a_1 & 2 & 0 \\ a_2 & a_3 & 2 \\ a_4 & -4 & 0 \end{bmatrix}$$
 such that det(A) = -6. The value of x_1 in solving the system $AX = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
a) $1/6$ b) $-1/6$ c) -2 d) $-1/3$ c) None of the previous.
(ii) Let $T : R^2 \to R$ be a linear transformation such that $T(0, 4) = 12$ and $T(2, -1) = 7$. Then $T(4, 0) = a) -12$ b) 12 c) 20 d) 5 c) -5
(iii) Given $D = \{(a, b, c) \in R^3 \mid a + b = 0$ and $a + c = 0\}$ is a subspace of R^3 . Then $D = a$ a) $span\{(1, 0, -1), (1, -1, 0)\}$ b) $span\{(-3, 3, 3)\}$ c) $span\{(0, 1, -1), (1, -1, 0)\}$ d) None is correct
(iv) One of the following is true:
a) $\{A \in R_{2\times 2} \mid det(A) = 0\}$ is a subspace of $R_{2\times 2}$ b) $\{(a, b, c) \in R^3 \mid a, b, c \in R \text{ and } a + b + c = 0\}$ is a subspace of R^3
c) $\{(a, ab) \mid a, b \in R\}$ is a subspace of R^2 d) $\{(a, 3a + b, -b) \mid a, b \ge 0\}$ is a subspace of R^3 .
(v) The values of k which make the system $\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & k \\ -3 & -3 & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$ has unique solution
a) $k \neq -3$ b) $k \neq -1$ c) $k = -1$ d) None is correct.
(vi) Let $F = \{(a - b - 2c, 3a - 3b - 6c, -2a + 2b + 4c, 3b - 2c) \mid a, b, c \in R\}$. We know that F is a subspace of R^4 . Then $dm(F) =$
a) 2 b) 3 c) 1 d) 4
(vii) One of the following is a basis for P_3
a) $\{1 + x + x^2, -1 - x - 2x^2, 1 + x + 5x^2\}$ $\{3, 2x - x^2, 6 + 4x - 2x^2\}$ c) $\{2x + 3x^2, x^2, 4 + x^2\}$ d)
None of the previous is correct
(viii) Let $F = \{\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \mid a_1 + a_4 = 0$ and $a_2 + a_3 = 0\}$. We know that F is a subspace of $R_{2\times 2}$. Then $F =$
a) $span\{ \{\frac{4}{2} - \frac{2}{2}, -\frac{2}{2}, \frac{1}{2} \}$ b) $span\{ \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \}$ c) $span\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \}$ d) None is correct
(ix) Let A be a 2×2 matrix such that $[A \mid I_2]$ is row-equivalent to $\begin{bmatrix} 2 & -3 & | & 3 & 0 \\ 4 & 3 & | & -4 & 2 \end{bmatrix}$. Then $det(A) =$
a) -6 b) 18 c) 3 d) -1 e) 104
(x) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 & 4 \\ 2 & 2 & 2 & 2 \end{bmatrix}$ and let $T : R^4 \to R^3$ such that $T(a, b, c, d) = A \begin{bmatrix} a \\ b \\ a \\ \end{bmatrix}$. Then Range(T) =
a) $Span$

(xii) Let A and T as above. One of the following points lies in the range of T:
a)(5, -8, 0, 0)
b) (0, 5, -5)
c) (5, 0, 0)
d) (5, 0, -10)

(xiii) The values of k which make the system $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & k \\ -3 & -3 & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$ consistent are

a) -3 b) -4 c) $k \neq -1$ and $k \neq -3$ d) -5 e) None of the previous.

(xiv) Let $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$. The eigenvalues of A are : a)1 b) 0, 1, 2 c) 0, 1 d) None is correct

(xv) Let C, D be 3×4 matrices, A be an invertible matrix 4×4 and B be a 3×4 matrix such that CA = DA = B. Then

a) C must equal to D b) C does not need to equal to D but Rank(C) = Rank(D) c) C does not need to equal to D d) Rank(C) = Rank(D) = 3 e) None of the previous is correct.

(xvi) Let
$$A^{-1} = \begin{bmatrix} 4 & 2 & -2 \\ -4 & -4 & 0 \\ 2 & 1 & -0.5 \end{bmatrix}$$
 Then the solution to the system $AX = \begin{bmatrix} 8 \\ -12 \\ 4 \end{bmatrix}$ is
a) $x_1 = 1, x_2 = 2, x_3 = 0$ b) $x_1 = 1, x_2 = 1, x_3 = -1$ c) $x_1 = -1, x_2 = 6, x_3 = 0$ d) None is correct

- (xvii) Let A^{-1} as above. Then (1, 3)-entry of A is
 - a) 1 b) -1 c) 2 d) 0.5 e) None is correct

(xviii) If A, B are 3×3 matrices such that $det(2A) = det(B^{-1}) = 4$. Then $det(ABA^T) = a$ a) 1 b) 1/4 c) 1/16 d) 64 e) none of the above

- (xix) Given A is 2×2 and $A \xrightarrow{2R_2 + R_1 \rightarrow R_1} B$. Let E be an elementary matrix such that EB = A. Then E = Aa) $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ d) None is correct
- (xx) Given v_1, v_2, v_3 are independent points in \mathbb{R}^7 . One of the following statements is correct:

a) $v_1, v_2, 2v_1 + v_2$ are independent points in R^7 b) $v_1, -v_1 + v_3, 3v_2$ are independent points in R^7 c) $v_1, v_1 + v_2 + v_3, -4v_1 + v_2 + v_3$ are independent points in R^7 d) (b) and (c) are correct e) All previous statements are correct.

(xxi) Let
$$A\begin{bmatrix} 8 & 9 & -2\\ 0 & b & 0\\ -4 & -b & 1 \end{bmatrix}$$
 such that $AX = \begin{bmatrix} 8\\ 0\\ -4 \end{bmatrix}$ has infinitely many solution. Then $b =$
a) 0 b) -9 c) 9 d) any real number e) None is correct
(xxii) Let $A = \begin{bmatrix} a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ a_7 & a_8 & a_9 \end{bmatrix}$ Given $x_1 = 2, x_2 = 1, x_3 = 0$ is a solution to the system $AX = \begin{bmatrix} 3a_3\\ 3a_6\\ 3a_9 \end{bmatrix}$. Then
a) $det(A) = 0$ b) The system $AX = \begin{bmatrix} 3a_3\\ 3a_6\\ 3a_9 \end{bmatrix}$ has infinitely many solutions c) $Rank(A) \le 2$

d) (a) and (b) and (c) are correct e) None of the previous is correct

(xxiii) Let A be a 4×4 matrix such that det(A) = -4. Let B be the fourth column of A. Then one of the following statement is correct:

a)It is possible that the system has infinitely many solutions and $x_1 = x_2 = x_3 = 5/12$, $x_4 = -1/4$ is a solution to the system AX = B.

b) It is possible that the system AX = B has infinitely many solutions and $x_1 = x_2 = x_3 = 5/4$, $x_4 = -1/4$ is a solution to the system AX = B.

c) $x_1 = x_2 = x_3 = 5/12$, $x_4 = -1/4$ is the only solution to the system AX = B.

d) $x_1 = x_2 = x_3 = 0$, $x_4 = 1$ is the only solution to the system AX = B.

QUESTION 2. (6 points)

Let $F = span\{(1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 1, 1)\}$ Find an orthogonal basis for F

2) (3 points) Find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

3)(**3 points**) For the Q you calculated in (2) find Q^{-1} .

4)(3 points) Find an invertible matrix M such that MA = D where D is the matrix you calculated in (2).

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com