Final Exam MTH 221, Fall 2011

Ayman Badawi

LECTURE TIME:-

QUESTION 1. $($ Each $=3$ points, Total $=69$ points $)$ Circle the correct letter.
(i) Let $A=\left[\begin{array}{ccc}a_{1} & 2 & 0 \\ a_{2} & a_{3} & 2 \\ a_{4} & -4 & 0\end{array}\right]$ such that $\operatorname{det}(\mathrm{A})=-6$. The value of x_{1} in solving the system $A X=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
a) $1 / 6$
b) $-1 / 6$
c) -2
d) $-1 / 3$
e) None of the previous.
(ii) Let $T: R^{2} \rightarrow R$ be a linear transformation such that $T(0,4)=12$ and $T(2,-1)=7$. Then $T(4,0)=$
a) -12
b) 12
c) 20
d) 5
e) -5
(iii) Given $D=\left\{(a, b, c) \in R^{3} \mid a+b=0\right.$ and $\left.a+c=0\right\}$ is a subspace of R^{3}. Then $D=$
a) $\operatorname{span}\{(1,0,-1),(1,-1,0)\}$
b) $\operatorname{span}\{(-3,3,3)\}$
c) $\operatorname{span}\{(0,1,-1),(1,-1,0)\}$
d) None is correct
(iv) One of the following is true:
a) $\left\{A \in R_{2 \times 2} \mid \operatorname{det}(A)=0\right\}$ is a subspace of $R_{2 \times 2}$
b) $\left\{(a, b, c) \in R^{3} \mid a, b, c \in R\right.$ and $\left.a+b+c=0\right\}$ is a subspace of R^{3}
c) $\{(a, a b) \mid a, b \in R\}$ is a subspace of R^{2}
d) $\{(a, 3 a+b,-b) \mid a, b \geq 0\}$ is a subspace of R^{3}.
(v) The values of k which make the system $\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & k \\ -3 & -3 & k\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-2 \\ 0 \\ 5\end{array}\right]$ has unique solution
a) $k \neq-3$
b) $k \neq-1$
c) $k=-1$
d) None is correct.
(vi) Let $F=\{(a-b-2 c, 3 a-3 b-6 c,-2 a+2 b+4 c, 3 b-2 c) \mid a, b, c \in R\}$. We know that F is a subspace of R^{4}. Then $\operatorname{dim}(F)=$
a) 2
b) 3
c) 1
d) 4
(vii) One of the following is a basis for P_{3}
a) $\left\{1+x+x^{2},-1-x-2 x^{2}, 1+x+5 x^{2}\right\}$
$\left\{3,2 x-x^{2}, 6+4 x-2 x^{2}\right\}$
c) $\left\{2 x+3 x^{2}, x^{2}, 4+x^{2}\right\}$
d)

None of the previous is correct
(viii) Let $F=\left\{\left.\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right] \right\rvert\, a_{1}+a_{4}=0\right.$ and $\left.a_{2}+a_{3}=0\right\}$. We know that F is a subspace of $R_{2 \times 2}$. Then $F=$
a) $\operatorname{span}\left\{\left[\begin{array}{cc}4 & 2 \\ -2 & -4\end{array}\right]\right\}$
b) $\operatorname{span}\left\{\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\right\}$
c) $\operatorname{span}\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\}$
d) None is correct
(ix) Let A be a 2×2 matrix such that $\left[A \mid I_{2}\right]$ is row-equivalent to $\left[\begin{array}{cc|cc}2 & -3 & 3 & 0 \\ 4 & 3 & -4 & 2\end{array}\right]$. Then $\operatorname{det}(A)=$
a) -6
b) 18
c) 3
d) -1
e) 104
(x) Let $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 4 \\ 2 & 2 & 2 & 2\end{array}\right]$ and let $T: R^{4} \rightarrow R^{3}$ such that $T(a, b, c, d)=A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$. Then Range(T$)=$
a) $\operatorname{Span}\{(1,1,1,1),(-1,-1,-1,4)\}$
b) $\operatorname{Span}\{(1,5,0),(1,0,0)\}$
c) $\operatorname{Span}\{(1,-1,2),(1,4,2)\}$
d) None is correct
(xi) Let A and T as above. One of the following points lies in the $\operatorname{Ker}(\mathrm{T})$:
a) $(1,1,0,0)$
b) $(0,1,-1,0)$
c) $(1,-1,0)$
d) $(1,0,1,0)$
(xii) Let A and T as above. One of the following points lies in the range of T :
a) $(5,-8,0,0)$
b) $(0,5,-5)$
c) $(5,0,0)$
d) $(5,0,-10)$
(xiii) The values of k which make the system $\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & k \\ -3 & -3 & k\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-2 \\ 0 \\ 5\end{array}\right]$ consistent are
a) -3
b) -4
c) $k \neq-1$ and $k \neq-3$
d) -5
e) None of the previous.
(xiv) Let $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$. The eigenvalues of A are :
a)1
b) $0,1,2$
c) 0,1
d) None is correct
(xv) Let C, D be 3×4 matrices, A be an invertible matrix 4×4 and B be a 3×4 matrix such that $C A=D A=B$. Then
a) C must equal to D
b) C does not need to equal to D but $\operatorname{Rank}(C)=\operatorname{Rank}(D)$
c) C does not need to equal to D d) $\operatorname{Rank}(\mathrm{C})=\operatorname{Rank}(\mathrm{D})=3$
e) None of the previous is correct.
(xvi) Let $A^{-1}=\left[\begin{array}{ccc}4 & 2 & -2 \\ -4 & -4 & 0 \\ 2 & 1 & -0.5\end{array}\right]$ Then the solution to the system $A X=\left[\begin{array}{c}8 \\ -12 \\ 4\end{array}\right]$ is
a) $x_{1}=1, x_{2}=2, x_{3}=0$
b) $x_{1}=1, x_{2}=1, x_{3}=-1$
c) $x_{1}=-1, x_{2}=6, x_{3}=0$
d) None is correct
(xvii) Let A^{-1} as above. Then (1,3)-entry of A is
a) 1
b) -1
c) 2
d) 0.5
e) None is correct
(xviii) If A, B are 3×3 matrices such that $\operatorname{det}(2 A)=\operatorname{det}\left(B^{-1}\right)=4$. Then $\operatorname{det}\left(A B A^{T}\right)=$
a) 1
b) $1 / 4$
c) $1 / 16$
d) 64
e) none of the above
(xix) Given A is 2×2 and $A \quad \overrightarrow{2 R_{2}+R_{1} \rightarrow R_{1}} \quad B$. Let E be an elementary matrix such that $E B=A$. Then $E=$
a) $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$
b) $\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$
d) None is correct
(xx) Given v_{1}, v_{2}, v_{3} are independent points in R^{7}. One of the following statements is correct:
a) $v_{1}, v_{2}, 2 v_{1}+v_{2}$ are independent points in R^{7}
b) $v_{1},-v_{1}+v_{3}, 3 v_{2}$ are independent points in R^{7}
c) $v_{1}, v_{1}+v_{2}+v_{3},-4 v_{1}+v_{2}+v_{3}$ are independent points in R^{7}
d) (b) and (c) are correct
e)

All previous statements are correct.
(xxi) Let $A\left[\begin{array}{ccc}8 & 9 & -2 \\ 0 & b & 0 \\ -4 & -b & 1\end{array}\right]$ such that $A X=\left[\begin{array}{c}8 \\ 0 \\ -4\end{array}\right]$ has infinitely many solution. Then $b=$
a) 0
b) -9
c) 9
d) any real number
e) None is correct
(xxii) Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right]$ Given $x_{1}=2, x_{2}=1, x_{3}=0$ is a solution to the system $A X=\left[\begin{array}{l}3 a_{3} \\ 3 a_{6} \\ 3 a_{9}\end{array}\right]$. Then
a) $\operatorname{det}(A)=0$
b) The system $A X=\left[\begin{array}{l}3 a_{3} \\ 3 a_{6} \\ 3 a_{9}\end{array}\right]$ has infinitely many solutions
c) $\operatorname{Rank}(A) \leq 2$
d) (a) and (b) and
(c) are correct
e) None of the previous is correct
(xxiii) Let A be a 4×4 matrix such that $\operatorname{det}(A)=-4$. Let B be the fourth column of A. Then one of the following statement is correct:
a)It is possible that the system has infinitely many solutions and $x_{1}=x_{2}=x_{3}=5 / 12, x_{4}=-1 / 4$ is a solution to the system $A X=B$.
b) It is possible that the system $A X=B$ has infinitely many solutions and $x_{1}=x_{2}=x_{3}=5 / 4, x_{4}=-1 / 4$ is a solution to the system $A X=B$.
c) $x_{1}=x_{2}=x_{3}=5 / 12, x_{4}=-1 / 4$ is the only solution to the system $A X=B$.
d) $x_{1}=x_{2}=x_{3}=0, x_{4}=1$ is the only solution to the system $A X=B$.

QUESTION 2. (6 points)

Let $F=\operatorname{span}\{(1,0,1,0),(0,1,1,0),(0,0,1,1)\}$ Find an orthogonal basis for F

QUESTION 3. (15 points) Given $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right]$ is diagnolizable.
1)(6 points) Find all eigen-spaces of A and write each one as a span of a basis.
2) ($\mathbf{3}$ points) Find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.
3)(3 points) For the Q you calculated in (2) find Q^{-1}.
4)(3 points) Find an invertible matrix M such that $M A=D$ where D is the matrix you calculated in (2).

Faculty information

